An at-home, wireless, soft electronics sleep monitoring system for long-term, reliable sleep assessment in young and older adults

Simran Saha¹, Isha Chhabra¹, Aiden Wachnin¹, Hyeonseok Kim², Woonhong Yeo², Lynn Marie Trotti³, Audrey Duarte¹

¹ Department of Psychology, University of Texas at Austin, ² IEN Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology USA. ³ George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, ⁴ Emory Sleep Center and Department of Neurology, Emory University School of Medicine

Introduction

- Constraints of "gold standard"
 polysomnography, including bulky, wired,
 rigid, expensive, and uncomfortable equipment
 either in an unfamiliar lab or at home, make
 collecting multiple nights of sleep data
 prohibitive.
- In the current study: we designed a portable, skin-like, wearable EEG monitoring patch, a sleep patch that was deployed at home over 7 nights
- We include young and old participants to assess typical age-related patterns
- Aim: to validate the age-related differences in microarchitecture and macroarchitecture observed in polysomnography literature using our sleep monitoring system

Methods

- 1. Participants: 12 old, 14 young healthy adults (age 18-36 and ages 60-74)
- 2. Measures:
- Sleep Patch
 - Gel-free, nearly weightless, sleep monitoring patch that uses soft, silicone elastomer in which the laser-cut electrodes are embedded, self-applied to the face for optimal usability and comfort.
- Bluetooth tablet-based data acquisition software
 - Captures the signals from the sleep patch.

Results

1. Raw sleep data: Raw sleep EEG data is measured in both young and old adults capturing the four channels' signals.

2. Hypnogram and spectrogram of a healthy subject showing sleep/wake cycles. Captures the characteristics for each sleep/awake stage, including alpha, REM, and slow wave sleep.

3. Confusion matrix: Manual scoring and YASA automated classification-based scoring showed good agreement across all sleep stages.

Results (Continued)

4. Table: Comparison between older and younger adults across different features.

	YA-Average[Standard Deviation]	OA-Average[Standard Deviation]	р
Average SNR (dB)	28.587[sd=2.154]	27.830[sd=1.898]	0.350
Change in SNR over time (dB)	2.008[sd=4.286]	-0.657[sd=3.543]	0.096
Total sleep time (min)	215.591[sd=84.002]	267.217[sd=117.725]	0.220
N1 of TST (%)	3.065[sd=1.655]	2.930[sd=1.792]	0.844
N2 of TST (%)	73.894[sd=12.925]	77.652[sd=9.887]	0.410
N3 of TST (%)	13.661[sd=7.981]	9.293[sd=5.842]	0.122
REM of TST (%)	9.370[sd=5.418]	10.124[sd=5.912]	0.739
spindle density_N2	1.259[sd=1.408]	0.755[sd=0.641]	0.245
spindle density_N3	0.212[sd=0.278]	0.156[sd=0.176]	0.539

5. Debriefing: Participants reported being easily able to self-apply the reusable sleep patch and operate the Bluetooth tablet-based data acquisition software throughout seven nights.

Survey Question	YA[sd]	OA[sd]
Would you wear this mask if your doctor wanted to see if your sleep indicated a sleep disorder? (1=unlikely, 7=likely)	6.300 [sd=0.823]	5.889 [sd=1.965]
How much did the mask interfere with your sleep, if it did? (1= none, 7= a great deal)	2.615 [sd=0.870]	2.182 [sd=1.250]
Overall, how easy was the mask to use (1=difficult, 7=easy)	5.000 [sd=1.118]	5.111 [sd=1.900]

Conclusion

- This study validates that the high comfort, wearable patch can measure physiological sleep data in adults across the lifespan.
- By utilizing this sleep patch with gel-free electrodes that can be worn at home, it would enable participants to engage in the study more naturally and over an extended period.
- Future work will use this system to assess sleep-dependent consolidation across ages from the comfort of one's home and measure sleep variables longitudinally to identify those most indicative of cognitive decline.

Acknowledgement

This research study was funded by NIA grant #R21AG064309